

Welcome to partridge’s documentation!

Contents:

	Partridge
	Philosophy

	Installation

	Usage

	Features

	Thank You

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	History
	1.1.1 (2019-09-13)

	1.1.0 (2019-02-21)

	1.0.0 (2018-12-18)

	0.11.0 (2018-08-01)

	0.10.0 (2018-04-30)

	0.9.0 (2018-03-24)

	0.8.0 (2018-03-14)

	0.7.0 (2018-03-09)

	0.6.1 (2018-02-24)

	0.6.0 (2018-02-21)

	0.6.0.dev1 (2018-01-23)

	0.5.0 (2017-12-22)

	0.4.0 (2017-12-10)

	0.3.0 (2017-10-12)

	0.2.0 (2017-09-30)

	0.1.0 (2017-09-23)

Indices and tables

	Index

	Module Index

	Search Page

Partridge

[image: _images/partridge.svg]
 [https://pypi.python.org/pypi/partridge][image: _images/partridge1.svg]
 [https://travis-ci.org/remix/partridge]Partridge is a Python 3.6+ library for working with GTFS [https://developers.google.com/transit/gtfs/] feeds using pandas [https://pandas.pydata.org/] DataFrames.

Partridge is heavily influenced by our experience at Remix [https://www.remix.com/] analyzing and debugging every GTFS feed we could find.

At the core of Partridge is a dependency graph rooted at trips.txt. Disconnected data is pruned away according to this graph when reading the contents of a feed.

Feeds can also be filtered to create a view specific to your needs. It’s most common to filter a feed down to specific dates (service_id) or routes (route_id), but any field can be filtered.

[image: dependency graph]

Philosophy

The design of Partridge is guided by the following principles:

As much as possible

	Favor speed

	Allow for extension

	Succeed lazily on expensive paths

	Fail eagerly on inexpensive paths

As little as possible

	Do anything other than efficiently read GTFS files into DataFrames

	Take an opinion on the GTFS spec

Installation

pip install partridge

GeoPandas support

pip install partridge[full]

Usage

Setup

import partridge as ptg

inpath = 'path/to/caltrain-2017-07-24/'

Inspecting the calendar

The date with the most trips

date, service_ids = ptg.read_busiest_date(inpath)
datetime.date(2017, 7, 17), frozenset({'CT-17JUL-Combo-Weekday-01'})

The week with the most trips

service_ids_by_date = ptg.read_busiest_week(inpath)
{datetime.date(2017, 7, 17): frozenset({'CT-17JUL-Combo-Weekday-01'}),
datetime.date(2017, 7, 18): frozenset({'CT-17JUL-Combo-Weekday-01'}),
datetime.date(2017, 7, 19): frozenset({'CT-17JUL-Combo-Weekday-01'}),
datetime.date(2017, 7, 20): frozenset({'CT-17JUL-Combo-Weekday-01'}),
datetime.date(2017, 7, 21): frozenset({'CT-17JUL-Combo-Weekday-01'}),
datetime.date(2017, 7, 22): frozenset({'CT-17JUL-Caltrain-Saturday-03'}),
datetime.date(2017, 7, 23): frozenset({'CT-17JUL-Caltrain-Sunday-01'})}

Dates with active service

service_ids_by_date = ptg.read_service_ids_by_date(path)

date, service_ids = min(service_ids_by_date.items())
datetime.date(2017, 7, 15), frozenset({'CT-17JUL-Caltrain-Saturday-03'})

date, service_ids = max(service_ids_by_date.items())
datetime.date(2019, 7, 20), frozenset({'CT-17JUL-Caltrain-Saturday-03'})

Dates with identical service

dates_by_service_ids = ptg.read_dates_by_service_ids(inpath)

busiest_date, busiest_service = ptg.read_busiest_date(inpath)
dates = dates_by_service_ids[busiest_service]

min(dates), max(dates)
datetime.date(2017, 7, 17), datetime.date(2019, 7, 19)

Reading a feed

_date, service_ids = ptg.read_busiest_date(inpath)

view = {
 'trips.txt': {'service_id': service_ids},
 'stops.txt': {'stop_name': 'Gilroy Caltrain'},
}

feed = ptg.load_feed(path, view)

Read shapes and stops as GeoDataFrames

service_ids = ptg.read_busiest_date(inpath)[1]
view = {'trips.txt': {'service_id': service_ids}}

feed = ptg.load_geo_feed(path, view)

feed.shapes.head()
shape_id geometry
0 cal_gil_sf LINESTRING (-121.5661454200744 37.003512297983...
1 cal_sf_gil LINESTRING (-122.3944115638733 37.776439059278...
2 cal_sf_sj LINESTRING (-122.3944115638733 37.776439059278...
3 cal_sf_tam LINESTRING (-122.3944115638733 37.776439059278...
4 cal_sj_sf LINESTRING (-121.9031703472137 37.330157067882...

minlon, minlat, maxlon, maxlat = feed.stops.total_bounds
-122.412076, 37.003485, -121.566088, 37.77639

Extracting a new feed

outpath = 'gtfs-slim.zip'

service_ids = ptg.read_busiest_date(inpath)[1]
view = {'trips.txt': {'service_id': service_ids}}

ptg.extract_feed(inpath, outpath, view)
feed = ptg.load_feed(outpath)

assert service_ids == set(feed.trips.service_id)

Features

	Surprisingly fast :)

	Load only what you need into memory

	Built-in support for resolving service dates

	Easily extended to support fields and files outside the official spec
(TODO: document this)

	Handle nested folders and bad data in zips

	Predictable type conversions

Thank You

I hope you find this library useful. If you have suggestions for
improving Partridge, please open an issue on
GitHub [https://github.com/remix/partridge/issues].

Installation

Stable release

To install partridge, run this command in your terminal:

$ pip install partridge

This is the preferred method to install partridge, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for partridge can be downloaded from the Github repo [https://github.com/remix/partridge].

You can either clone the public repository:

$ git clone git://github.com/remix/partridge

Or download the tarball [https://github.com/remix/partridge/tarball/master]:

$ curl -OL https://github.com/remix/partridge/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use partridge in a project:

import partridge

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/remix/partridge/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

partridge could always use more documentation, whether as part of the
official partridge docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/remix/partridge/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up partridge for local development.

	Fork the partridge repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/partridge.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv partridge
$ cd partridge/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests:

$ flake8 partridge tests
$ python setup.py test or py.test
$ tox

To get flake8, just pip install it into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6+. Check
https://travis-ci.org/remix/partridge/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_feed

History

1.1.1 (2019-09-13)

	Improve file encoding sniffer, which was misidentifying some Finnish/emoji unicode. Thanks to @dyakovlev!

1.1.0 (2019-02-21)

	Add partridge.load_geo_feed for reading stops and shapes into GeoPandas GeoDataFrames.

1.0.0 (2018-12-18)

This release is a combination of major internal refactorings and some minor interface changes. Overall, you should expect your upgrade from pre-1.0 versions to be relatively painless. A big thank you to @genhernandez and @csb19815 for their valuable design feedback. If you still need Python 2 support, please continue using version 0.11.0.

Here is a list of interface changes:

	The class partridge.gtfs.feed has been renamed to partridge.gtfs.Feed.

	The public interface for instantiating feeds is partridge.load_feed. This function replaces the previously undocumented function partridge.get_filtered_feed.

	A new function has been added for identifying the busiest week in a feed: partridge.read_busiest_date

	The public function partridge.get_representative_feed has been removed in favor of using partridge.read_busiest_date directly.

	The public function partridge.writers.extract_feed is now available via the top level module: partridge.extract_feed.

Miscellaneous minor changes:

	Character encoding detection is now done by the cchardet package instead of chardet. cchardet is faster, but may not always return the same result as chardet.

	Zip files are unpacked into a temporary directory instead of reading directly from the zip. These temporary directories are cleaned up when the feed is garbage collected or when the process exits.

	The code base is now annotated with type hints and the build runs mypy to verify the types.

	DataFrames are cached in a dictionary instead of the functools.lru_cache decorator.

	The partridge.extract_feed function now writes files concurrently to improve performance.

0.11.0 (2018-08-01)

	Fix major performance issue related to encoding detection. Thank you to @cjer for reporting the issue and advising on a solution.

0.10.0 (2018-04-30)

	Improved handling of non-standard compliant file encodings

	Only require functools32 for Python < 3

	ptg.parsers.parse_date no longer accepts dates, only strings

0.9.0 (2018-03-24)

	Improves read time for large feeds by adding LRU caching to ptg.parsers.parse_time.

0.8.0 (2018-03-14)

	Gracefully handle completely empty files. This change unifies the behavior of reading from a CSV with a header only (no data rows) and a completely empty (zero bytes) file in the zip.

0.7.0 (2018-03-09)

	Fix handling of nested folders and zip containing nested folders.

	Add ptg.get_filtered_feed for multi-file filtering.

0.6.1 (2018-02-24)

	Fix bug in ptg.read_service_ids_by_date. Reported by @cjer in #27.

0.6.0 (2018-02-21)

	Published package no longer includes unnecessary fixtures to reduce the size.

	Naively write a feed object to a zip file with ptg.write_feed_dangerously.

	Read the earliest, busiest date and its service_id’s from a feed with ptg.read_busiest_date.

	Bug fix: Handle calendar.txt/calendar_dates.txt entries w/o applicable trips.

0.6.0.dev1 (2018-01-23)

	Add support for reading files from a folder. Thanks again @danielsclint!

0.5.0 (2017-12-22)

	Easily build a representative view of a zip with ptg.get_representative_feed. Inspired by peartree [https://github.com/kuanb/peartree/blob/3bfc3f49ae6986d6020913b63c8ee32582b3dcc3/peartree/paths.py#L26].

	Extract out GTFS zips by agency_id/route_id with ptg.extract_{agencies,routes}.

	Read arbitrary files from a zip with feed.get('myfile.txt').

	Remove service_ids_by_date, dates_by_service_ids, and trip_counts_by_date from the feed class. Instead use ptg.{read_service_ids_by_date,read_dates_by_service_ids,read_trip_counts_by_date}.

0.4.0 (2017-12-10)

	Add support for Python 2.7. Thanks @danielsclint!

0.3.0 (2017-10-12)

	Fix service date resolution for raw_feed. Previously raw_feed considered all days of the week from calendar.txt to be active regardless of 0/1 value.

0.2.0 (2017-09-30)

	Add missing edge from fare_rules.txt to routes.txt in default dependency graph.

0.1.0 (2017-09-23)

	First release on PyPI.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to partridge’s documentation!

 		
 Partridge

 		
 Philosophy

 		
 Installation

 		
 Usage

 		
 Inspecting the calendar

 		
 Reading a feed

 		
 Extracting a new feed

 		
 Features

 		
 Thank You

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 History

 		
 1.1.1 (2019-09-13)

 		
 1.1.0 (2019-02-21)

 		
 1.0.0 (2018-12-18)

 		
 0.11.0 (2018-08-01)

 		
 0.10.0 (2018-04-30)

 		
 0.9.0 (2018-03-24)

 		
 0.8.0 (2018-03-14)

 		
 0.7.0 (2018-03-09)

 		
 0.6.1 (2018-02-24)

 		
 0.6.0 (2018-02-21)

 		
 0.6.0.dev1 (2018-01-23)

 		
 0.5.0 (2017-12-22)

 		
 0.4.0 (2017-12-10)

 		
 0.3.0 (2017-10-12)

 		
 0.2.0 (2017-09-30)

 		
 0.1.0 (2017-09-23)

_static/up-pressed.png

_static/up.png

